

TOC Americas: DCSA

Navigating the Future:

Enhancing Maritime Trade through Strategic Digitalization & standardization

03

DCSA is founded and supported by carriers to accelerate digitalization in shipping

Help improve the **customer experience** through digitalization

Deliver **efficiencies** to the wider ecosystem, in particular members

Contribute actively to the **sustainability** goals of the industry

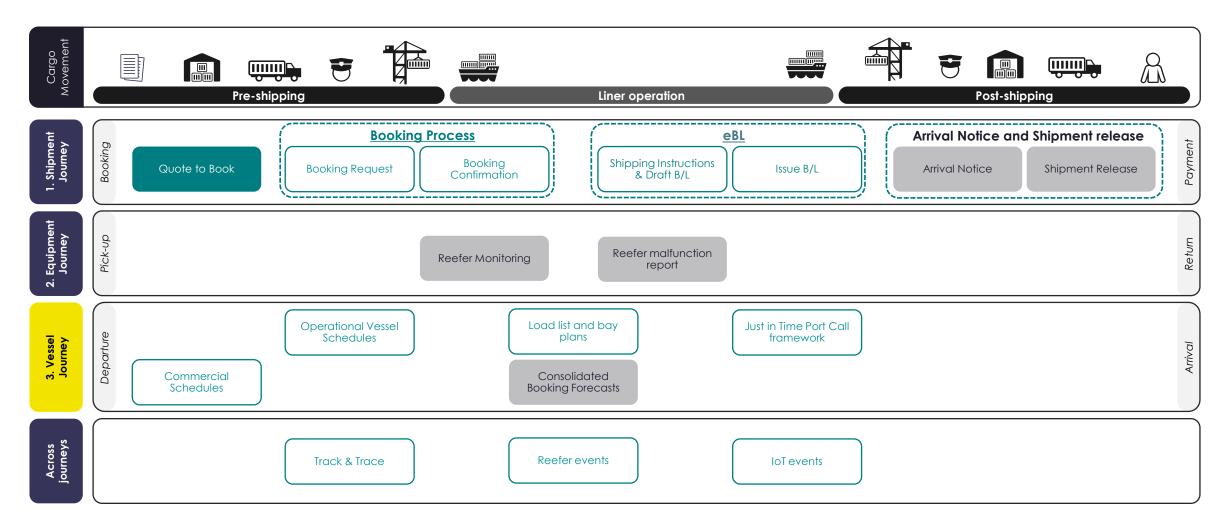
DCSA and its members collaborate with many stakeholders to drive change:

Ensure standards meet market needs and global trade requirements Authorities & standards bodies

DCSA and it's carrier members Shippers and freight forwarders

Enable rapid standards adoption for interoperability

All logistics participants


Technology solution providers

Current DCSA standards overview:

Standardizing exchange of operational data is a complex journey as it involves multiple stakeholders along the way.

Schedule is a pre-requisite to many elements in the data flow between carriers & terminals

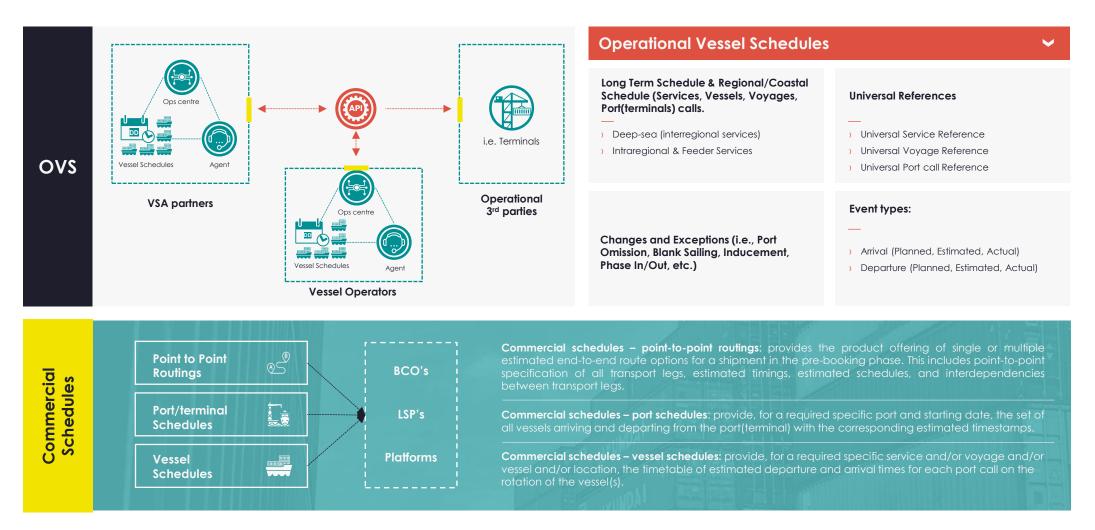
Data definitions (terminology)

Industry Blueprint (processes)

Information model -IM

Interface Standard Document -IFS

APIs design principle & implementation reference


Accompanied by reading guides, glossary of terms and FAQs

DCSA Schedules Standards:

Operational Vessel Schedule & Commercial Schedule

Port 1 & Terminal 1 Port 1 & Terminal 2

Port 2 & Terminal 1 Port 3 & Terminal 1 Port 3 & Terminal 2 Port 4 & Terminal 1 Port 4 & Terminal 2 Port 5 & Terminal 1 Port 6 & Terminal 1 Port 7 & Terminal 1

DCSA - Operational Vessel Schedules Standard

OVS 3.0

Service Code
Service Name
USR (agreed by VSA partners)
Voyage Number
Voyage Reference (agreed by VSA partners)
Vessel Operator SMDG Code

Vessel Departivo

Jessel Arivo

d Jessel Pero , 16⁵⁵

Vessel Departudi

Vessel Depolity

Jessel Deport

Vessel Depotivol

Jessel Depolitud

Vesel Departud

Planned Estimated Actual

Flag changes and exceptions (Omission, Blank Sailing, etc.)

Key Elements

Event Type

- Arrival: At port terminal berth
- **Departure:** From port terminal berth

- Event Classification
- Planned: Long term schedule
- Estimated: Coastal/Regional schedule
- Actual: actual timestamp

Changes & exceptions

- Port omission
- Cut & run
- Inducement / ad hoc call
- Port call swap (rotation change)
- Blank sailing
- Phase out/in
- Slide

Key Benefits

Increased Digitalization

Agreed semantics, data structure, and events means data have the same meaning regardless of the provider

Increased Efficiency

Easier and clearer communication within and between VSA partners and other operational partners (i.e. terminals) makes activities such as scheduling, berth and yard planning, customer and hinterland connectivity more efficient and reliable

Data driven optimization

Aligned, structure and high-quality data provides the necessary foundation for operational analysis and operations optimization

Universal Service reference & Voyage reference USR & UVR

5.4.1 Format for Universal Service Reference

The Universal Service Reference (USR) as defined by DCSA is composed of the letters SR followed by 5 digits, followed by a checksum character from A to Z. A service reference can look like, for example, SR0000X.

SR

5 numeric digits (0...91)

1 check character (A...Z)

DCSA distributes IJSRs to DCSA members and non-members, ensuring that each IJSR is assigned only once and belongs to only one carrier. If a carrier runs out of available USRs because they have all been used in services. a new batch can be requested from DCSA.

Service	Carrier 1	Carrier 2	Carrier 3	USR
Asia - Europe	Carrier 1 Service Code XX2	Carrier 2 Service Code YYYY2P	Carrier 3 Service Code Z3Z4Z	SR12345X (Reference managed by Carrier 3)
Oceania - Asia	Carrier I Service Code UY3	Carrier 2 Service Code IYOP22		SR54321W (Reference managed by Carrier 1)

EXAMPLE OF USR

UVR

5.5.1 Format for Universal Voyage Reference

The Universal Voyage Reference has been restricted to 5 digits to comply with US customs requirements:

Year YY Sequence (0...9 & A...Z) Bound (EWNSR)

- 2 digits identifier for the year (i.e., 23 = 2023)
- 2 alphanumeric characters for the sequence number of the voyage (i.e., 10 = 10, A0 = 100, etc)
- See appendix for full table with logic for sequence numbers to cover from voyage 01 to 1295 in a year

- 1 character identifier for the direction/haul [import/export] (i.e., E = East)
- E = East
- W = West
- N = North
- S = South
- R = Roundtrip

UVRs can be implemented in DCSA API or in EDI messages (SMDG to define segment).

Asia - Europe	Carrier 1 Service Code XX2	Carrier 2 Service Code YYYY2P	Carrier 3 Service Code 7374 Z	SR12345X (Reference managed by Carrier 3)
Voyage	Carrier 1	Carrier 2	Carrier 3	UVR
Voyage N Operated Carrier	304E	04FENW1MA	V354E	2304E
Vessel	IMO8712345	IMO8712345	IMO8712345	IMO8712345
	- E X A	MPLE OF	UVR	

Implementation of Operational Vessel Schedule: (OVS)

Status of standards implementation (member carriers)

Status of standards implementation (non-member carriers & SP)

	ovs	Carrier partner	Terminal partner	USR/UVR
CMACGM	March 2024	MSK, MSC, feeders	HVCC, Hutchison, Gemalink, Navis	In scope
X MAERSK	January 2024	CMA, HLAG, ZIM, feeders	HVCC, Navis, P44,	In scope
<u>m</u> sc	June 2024	CMA, MSK	TIL	TBD
K Hapag-Lloyd	March 2024	CMA, MSK	HVCC	In scope
EVERGREEN	March 2024	Yang Ming	Kaohsiung terminal	In scope
DNE	In progress	TBD	none	In scope
YANG MING	March 2024	Evergreen (march), HMM	Kaohsiung	USR, UVR not yet
ŽÍM	March 2024	MSK, MSC, HLAG	none	In scope
НММ	In progress	Yang Ming	none	Unsure

	ovs	USR UVR	
Unifeeder	3.0 Beta	Ongoing discussions to	
Xpress Feeder	3.0 Beta	implement in 2024	
NCL	3.0 Beta expected soon		
NAVIS	3.0 Beta		
Portbase	Expected to consume		
HVCC Hamburg	Can consume OVS 3.0 and testing with MSK, CMA		
Hutchison Ports ECT Rotterdam	Can consume OVS 3.0 and testing with CMA		
Gemalink Vietnam	Can consume OVS 3.0 and testing with CMA		

Just in Time Port Call scope & explanation

Understanding the Just in Time operational implementation framework

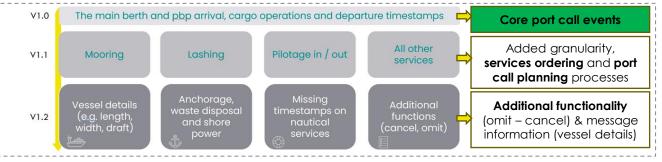
Scalable: Using globally aligned semantics and definitions;

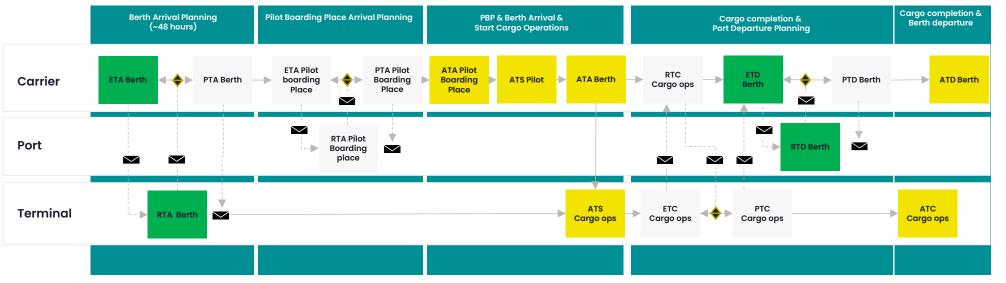
DCSA added information model & API specs

Usable: Message format very clear to communicate

about important operational port call events.

Lightweight: Only 22 data attributes, of which only 6 are


needed for the core message


Complete: Nearly all port call events and services included

as a pick & choose portfolio

Actual Event

Planned Event

DCSA observation: Current adoption focuses on berth window management / berth alignment (the green timestamps), because:

- Biggest business value for carriers & terminals
- Current tooling focuses on berth alignment
- Timestamps already commonly used

Most value experienced in local ecosystems.

Insights for JIT Port call implementation: timing and data sourcing

- Many ways to implementation: automated messages versus manual message from own system: what (or who) triggers a message?
- System landscape and map of information crucial: where to find what information? Is this live information? Is this readable by the application that is communicating?
- Data quality and reliability are two absolutely essential drivers; errors popped up in the test weeks demonstrated **the value of data quality & timeliness.** Good quality data is a prerequisite to extract the benefits from JIT concept.
- Every timestamp can have a slightly different set of compulsory information (includes mandatory & optional data attributes)

Examples of implementation challenges we seen:

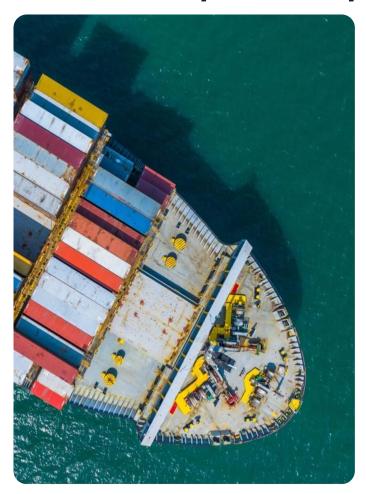
- Lack of connectivity between systems prevent extract necessary data (e.g., current / previous port call in different systems)
- Internal systems unable to read data from one-another
- System information not synchronized in time to create msg
- Receiving and reading information poses a whole new challenge

JIT Port Call framework version 2.0 will be release on January 2025

Implementation of Just in Time port call framework:

Status of implementation (member carriers)

Status of standards implementation (Ports, solution providers, terminals)



	JIT version	Timestamps	Partners	Organisation	JIT	Usage
сма сдм	1.1	Berth and PBP arrival / departure	Navis, PSA, HVCC, APMT	Wartsila ECDIS	1.1	testing
X MAERSK	none	none		NAVIS	1.1	Yes
m Sc	1.1	Berth arrival and departure		Busan PNIT	1.1	Digital twin
	1.1	Berth arrival and departure	Portchain, PSA	PSA Singapore & VoyagerWW	1.1	Yes
EVERGREEN	1.2 beta	Berth arrival and departure	Portchain, Antwerp, Piraeus, Kaohsiung, Navis	HVCC Hamburg	1.1	Yes
COLOR NOTIONS CONTAIN	none	none		APM Terminals	1.1	Shipping line dashboard
YANG MING	1.2 beta	Berth and PBP arrival / departure	Kaohsiung, Navis	Kaohsiung	1.2	Testing
ŽIM	None	none				
HMM	Ongoing	none	Busan			

How can you get involved in getting a better schedule information and/ or JIT port call planning?

Operational Vessel Schedule (OVS) standard

is meant for sharing a schedule information between VSA partners and to provide schedule from carrier → to terminal.

As a terminal operator, you can request to get an access to OVS APIs from DCSA members. For this you can either contact directly shipping line or ask DCSA team to get you in touch with the right team.

7 carriers -DCSA members- have already implemented OVS APIs.

JIT Port call framework

is meant for a facilitation of port call planning & execution between carriers –terminals – ports and other ops stakeholders.

In 2024 DCSA is working on the next version of JIT Port Call framework (2.0) which will be released in January 2025 and similar to the previous version it will be tested between carriers, terminals & ports (and SP)

Get in touch with DCSA team to know more about opportunities to set up a joint test or integrations with the shipping lines for JIT port call framework.

4 carriers - DCSA members- have already implemented a previous version (JIT 1.2)

*Commercial schedule standard (CS) is meant for sharing a schedule from the carriers towards their customers. It has been published in Sep- 2024 and currently under implementation. To know how to consume CS data and which carriers are providing it-pls contact DCSA team

https://dcsa.org/standards/operational-vessel-schedules https://dcsa.org/standards/commercial-schedules https://dcsa.org/standards/just-in-time-port-call

Kristina Jumelet kristina.jumelet@dcsa.org

Please connect with DCSA team and/or DCSA member-carriers to know more about how your company can get involved in implementation of the standards.